

CERE-120 (AAV-Neurturin) for Parkinson's Disease

NIH OBA Protocol # 0501-689

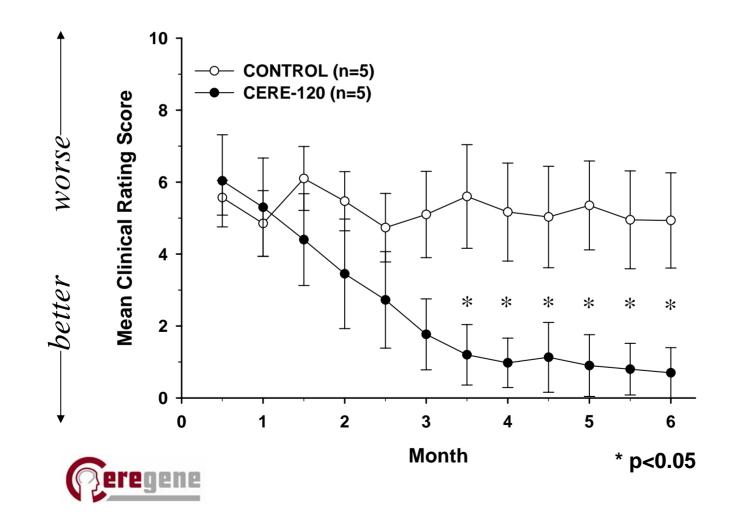
A Phase I, Open-Label Study of CERE-120 (Adeno-Associated Virus Serotype 2 [AAV2]-Neurturin [NTN] to Assess the Safety and Tolerability of Intrastriatal Delivery to Subjects with Idiopathic Parkinson's Disease

> CERE-120 Program Overview Raymond T. Bartus, Ph.D. Senior V.P and COO, Ceregene, Inc.

AAV-NTN: opportunity for innovative therapy for Parkinson's disease

- **Target dopamine nigrostriatal neurons:** degeneration implicated as key pathogenic event in disease
- Provide constant supply of neurotrophic factor
 - enhancing condition and function of neurons
 - strengthening their ability to withstand degeneration

Targeted neurotrophic factors should offer two benefits to Parkinson's patients



Improve disease symptoms
 Retard disease progression

Most experts acknowledge that if these goals could be achieved... ...it would revolutionize the treatment of PD

AAV-NTN (CERE-120) produces functional improvement in MPTP lesioned monkeys over time

4

Potential advantages of AAV- NTN gene transfer for PD

- Employ same AAV vector currently used in other CNS gene transfer trials, including AAV-NGF (CERE-110) for AD
- Administer relatively **small quantities** of vector and transgene **directly** to **target**
- Avoid significant systemic exposure of vector and transgene

Controlling potential risks with innovative gene transfer for PD

- Leverage much of prior experience with delivering neurotrophic factors to the brains of animals and humans
- Deliver **NTN** gene, which is structurally and functionally **similar to GDNF**, which in turn, has been well-characterized and administered into human brain for years
- Execute **comprehensive safety/toxicology** program with high dose multiples

Overview: CERE-120 Nonclinical program, part 1

<u>**19 total studies</u>** (7 monkey and 12 rat studies, examining 45 monkeys and 384 rats) involving three different types of studies:</u>

- Pharmacology
- Efficacy
- Safety/toxicology
- <u>Pharmacology</u> (established expression kinetics, volume of distribution & dosing relationships of CERE-120)
 - 4 Rat studies (82 rats)
 - 1 monkey study (3 monkeys)

Overview: CERE-120 Nonclinical program, part 2

- <u>Efficacy</u> (established bioactivity/efficacy and doseresponse of NTN)
 - 3 Rat studies (109 rats)
 - 2 monkey studies (13 monkeys, including 3 aged)
- <u>Safety/toxicology</u> (established wide safety margin of CERE-120)
 - 5 rat studies (193 rats, including 25 aged)
 - 4 monkey studies (29 monkeys)

CERE-120 Safety Profile, part 1

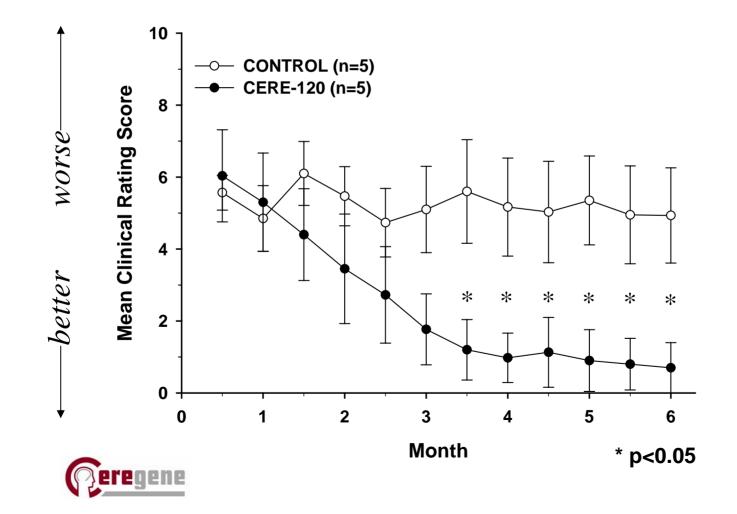
- Large dose multiples were tested:
 - Efficacious in rats at 125 fold lower than highest (safe) toxicology dose
 - Safe in monkeys at >100 and 400 fold higher than proposed human doses
- No overt, adverse effects: body weight, appearance, general health and general behavior (rats: 12mos; monkeys: ~8mos)
- No adverse effects on formal neurological or behavioral assessments

CERE-120 Safety Profile, part 2

- **No functional impairments** on the targeted nigrostriatal system
- No histopathological changes in targeted nigrostriatal system or cerebrum, cerebellum, brain stem, spinal cord or any peripheral organ
- No adverse effect on blood clinical chemistry or hematology

Bottom line: No sign of any toxicity of any kind, at very large dose multiples, over many months in rats and monkeys

Key RAC review points


- 1) Questions regarding efficacy of CERE-120
- 2) Kinetics and accumulation of NTN in brain
- 3) 'Multiple brain regions' targeted and spread of protein to non-targeted brain regions
- 4) The use of non-regulatable vector
- 5) Question of 'rescue strategy'
- 6) Cerebellar toxicity reported in select, GDNF proteintreated monkeys
- 7) Rationale for dosing schedule in humans

Issue #1: Questions regarding efficacy of CERE-120

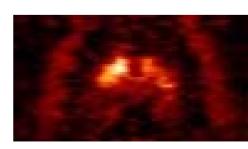
CERE-120 produces functional improvement in MPTP lesioned monkeys over time

13

CERE-120 Enhances ¹⁸F-Dopa in Striatum of Aged Monkey via PET

Monkey #	Treated hemisphere	Untreated hemisphere	% difference
0201	0.056	0.046	+19.6%
0202	0.065	0.055	+17.4%
0204	0.047	0.037	+26.6%
Mean	0.056±0.005	0.046±0.005	+21.2%

Untreated


Treated

Monkey #

0201

0202

t(2)=39.74, p<0.001

0204

CERE-120: multiple, mutually corroborating evidence of bioactivity/ efficacy

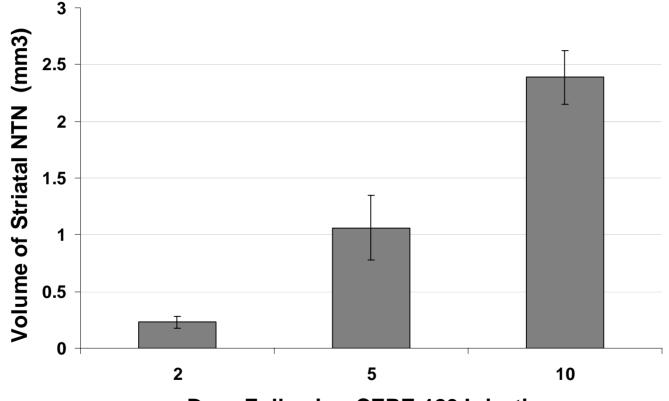
- Young, healthy monkeys
 - Enhanced nigrostriatal TH staining
 - enhanced activation of pERK signaling
- 6-OHDA rat model of PD
 - Protection of nigral cells at multiple time points (up to 7 mos)
 - Protection of nigral cells over range of doses, including fraction of dose shown to be safe (i.e. 1/125)
 - Functional (behavioral) benefit
- MPTP monkey model of PD
 - long-lasting improvement in motor performance
- Aged monkeys
 - Enhanced ¹⁸F-Dopa PET update in striatum
- Aged rats (New since filing App. M)
 - 'Classic' neurotrophic-induced hypertrophy: dopamine nigra neurons

Issue #1: Questions regarding efficacy of CERE-120

Synopsis:

CERE-120 provides clear and consistent neurotrophic support for nigrostriatal neurons in multiple rat and monkey studies, including 'best models of PD'

Issue #2: Kinetics and Accumulation of NTN in Brain



17

Summary: CERE-120 Pharmacology

- NTN is expressed in the rat striatum
 - as early as 2 days
 - approaches asymptote at approximately 4
 weeks
 - shows no significant increases thereafter (up to seven months)
- NTN volume of distribution
 - **controlled via dose** of CERE-120
 - shows **no** further **accumulation** over range of doses

NTN expression seen soon after CERE-120 administration

Days Following CERE-120 Injection

NTN volume of distribution is stable over time following AAV-NTN treatment in rats

Months: post CERE-	Volume of NTN distribution (mm ³)		
120 injection	Striatum	Total	
1	14.84 ± 1.16	19.13 ±1.79	
3	12.79 ± 1.12	16.85 ±1.86	
6	11.08 ± 1.15	14.96 ±1.46	
7	14.43 ± 1.47	ND	

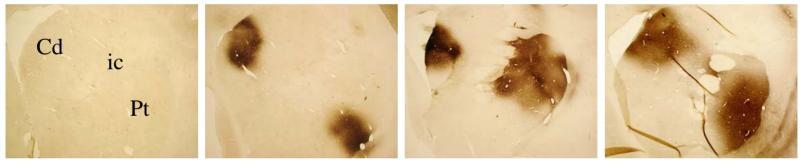
NOTE:

•<u>Total</u> reflects sum of all NTN staining, including striatum and all surrounding areas, particularly the globus pallidus and cortex around needle track (only).

• <u>ND</u>: The total volume of NTN spread at 7 mo. was not determined.

• <u>Data</u> are derived from several separate experiments.

Issue #2: Kinetics and Accumulation of NTN in Brain Synopsis:

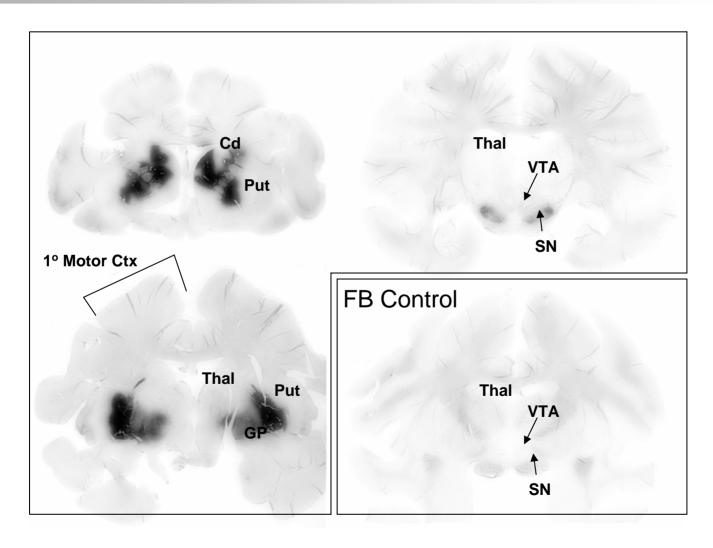

- Onset of NTN expression: rapid
- Volume of expression: reaches steady state levels at about 4 weeks and then shows no significant, further increase
- No accumulation during many months, over range of doses

Issue #3: 'Multiple Brain Regions' Targeted and Spread of Protein to Non-targeted Brain Regions

Dose-related NTN distribution in monkey striatum

FB

CERE-120 Low Dose $(3x10^{10} \text{ vg})$ CERE-120 Mid Dose $(1x10^{11} vg)$


CERE-120 High Dose $(3x10^{11} \text{ vg})$

Cd = caudate ic = internal capsule Pt = putamen

Doses: vg/hemisphere

Distribution of NTN in monkey following highest possible CERE-120 dose (1.75 x 10¹² vg/hemi.)

Primate brain regions expressing NTN protein following CERE-120

Durain Decion	Dose			
Brain Region	6E10	2E11	6E11	1.75E12
Striatum	yes	yes	yes	yes
Substantia Nigra	yes	yes	yes	yes
Globus pallidus (neuropil/fibers only)	(yes)	(yes)	(yes)	(yes)
VTA	NO	NO	NO	NO
Thalamus	NO	NO	NO	NO
Cortex (excluding track)	NO	NO	NO	NO
Remainder of brain	NO	NO	NO	NO 25

Issue #3: 'Multiple Brain Regions' Targeted and Spread of Protein to Non-targeted Brain Regions

Synopsis:

Targeting of CERE-120 is limited to nigrostriatal system and NTN expression is mostly limited to this system, as well

Issue #4: The Use of Non-regulatable Vector

Perspectives on the general use of nonregulatable vectors for neurotrophic factors

- Several human trials already delivered neurotrophic factors into CNS (up to several years); risks appear well characterized and likely related to non-targeted delivery
- Several gene therapy trials previously approved by RAC for heart and CNS indications, delivered growth factors via non regulatable vectors
- **Regulatable vectors** have their own **potential risks** (e.g., **unnatural**, transcriptional **proteins** are persistently expressed **without regulation** and can generate **immune reaction**; i.e., the **regulator is unregulated**
- Unknown **risks** associated with small molecule regulator (i.e., systems inherently require additional **'regulator drug'**)
- No regulatable vector has yet been tested in humans and a full assessment of efficacy & risks is still several years away

Justification for using a non- regulatable vector specifically to deliver NTN for PD

- **CERE-120** produces **no** apparent **toxicity**, including none of the empirically-defined effects of poorly targeted growth factors
- **Doses hundreds of times higher** than those proposed for this human trial were tested in animals, demonstrating that:
 - Expression of protein is mostly restricted to nigrostriatal system
 - No significant increase in volume of expression occurs after 4 weeks
 - No adverse effects are observed anywhere in the CNS
 - No adverse effects are seen anywhere systemically

CERE-120 dose multiples

- Rat dose multiple
 - Rat efficacious dose versus dose shown to be safe:
 <u>250 times</u>
- Rat to human dose multiple (via brain weight)
 Dose shown to be safe versus proposed human
 - doses: <u>50 and 200 times</u>
- Monkey to human dose multiple (brain weight)
 - Dose shown to be safe versus proposed human doses: <u>100 and 400 times</u>

Conclusion: Data support CERE-120 as a nonregulatable vector to deliver NTN for PD

- Wide safety margin of CERE-120 established, without regulation:
 - expression of protein is controlled
 - is stable from 1 month to > 7 months
 - is safe at large dose multiples
- Arguments against a regulatable vector:
 - an **appropriate risk: benefit** ratio established
 - regulatable vector could conceivably increase risk due to unknown aspects of more complicated, 'first in human' construct
 - No prior studies required a regulatable vector and the data with CERE-120 reveal no reason for greater concern

Issue #4: The Use of Non-regulatable Vector Synopsis:

While concerns about unregulated expression of NTN may seem understandable, they are not supported by CERE-120 safety/distribution data and nature of proposed protocol

Issue #5: 'Rescue Strategy' Employed

Addressing Possible Adverse Events (AEs) to CERE-120

- 1) We carefully **considered possible** and hypothetical **AEs**, based on collective past experience with growth factors, nuances of Parkinson's disease & comprehensive review of literature
- 2) Are providing **clear information** regarding all potential & hypothetical risks to **each subject** via "informed consent"
- 3) Will continuously and **carefully monitor subjects** for AEs and manage with available therapy

Hypothetical AE's and Treatment Strategies

Symptoms	Setting / Liability	Treatment Options
Nausea & vomiting	Only seen with ICV GDNF; delivery problem	Antiemetics (e.g., ondansetron; trimethobenzamide; domperidone)
Anorexia & weight loss	Only seen with ICV GDNF; delivery problem	•Clinical monitoring & diet change •Appetite enhancers
Parethesias / Pain	More severe with ICV GDNF; less with intraputaminal infusion; delivery problem	•NSAIDS & acetaminophen •Tricyclic antidepressants •Gabapentin &/or tizanidine
Lhermitte's sign	More severe with ICV GDNF; less with intraputaminal infusion	Pharmacological Rx (mexiletine; gabapentin; tizanidine; tricyclics)
Hyponatremia	Only seen with ICV GDNF; delivery problem	Limit free water intakeDemeclocycline & lithium carbonate
GI Disturbances	Only seen with ICV GDNF; delivery problem	 •Adjust diet; add bulking agents •RX: laxatives/soften stool; diarrhea
Dsykinesias	<i>Hypothetical AE:</i> GDNF actually appears to <u>reduce</u> dyskinesias	 Adjust antidopaminergic therapy Add amantadine Deep brain stimulation
Psychotic symptoms	<i>Hypothetical AE</i> : No empirical data	 Adjust dopaminergic therapy Add atypical anti-psychotics

Issue #5: 'Rescue Strategy' Employed

Synopsis:

Rescue strategies do exist to deal with hypothetical risks of CERE-120

Issue #6: Cerebellar Toxicity Reported in Select, GDNF-treated Monkeys

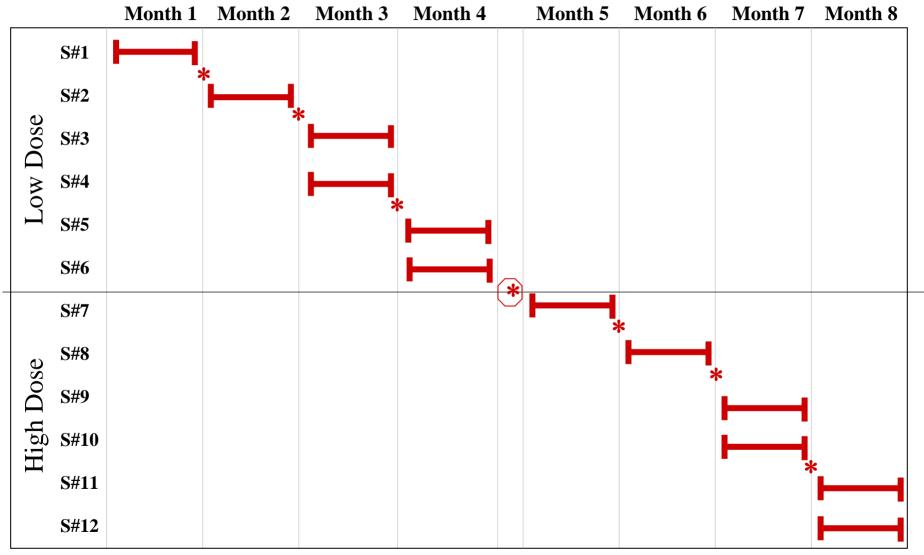
Synopsis of GDNF-induced 'Cerebellar Toxicity'

- Toxicity reported: **focal cell loss in cerebellum** of some of ' 6mo highest dose- 3 mo recovery' monkeys (only)
- If link between GDNF and cytotoxicity is proven, data suggests it was **likely caused** by deficiencies in delivery system (i.e., **leakage of protein from indwelling cannula**); supported by:
 - Clear evidence of 'classic' changes near meninges (e.g, pia thickening, Schwann cell hyperplasia and sympathetic in growth; Boyd & Hovland, 2004) in mid and high dose monkeys
 - Confirmation of I¹²⁵-GDNF in occipital cortex and cerebellum in monkeys infused using similar pump/cannula system (Gash et al, 2005)

Synopsis of GDNF-induced 'Cerebellar Toxicity': part 2

- Evidence of leakage (and possible toxicity) reinforces need for improved delivery method
 - Gill, et al (Nat Med, 2003) suggested **gene therapy** as example of improved delivery method
 - No evidence for protein leakage or cerebellar cytotoxicity following very high doses of CERE-120 in rats or monkeys
- **Subjects** in GDNF studies: **no** apparent **cerebellar AEs**
 - Initial autopsy subject from Gill et al study revealed no cerebellar toxicity

Issue #6: Cerebellar Toxicity Reported in Select, GDNF-treated Monkeys


Synopsis:

Putative GDNF toxicity most likely reflects untargeted delivery in monkeys and not inherent limitation of protein- this argues FOR, NOT AGAINST use of gene transfer for this application

Issue #7: Rationale for Dosing Schedule in Humans

Schematic of Proposed Dosing Schedule for CERE-120

*** DSMB Cumulative Data Review**

Rationale for CERE-120 Dosing Schedule in Advanced PD subjects

- Purpose of this study is to evaluate safety of CERE-120
- Volume of expression of NTN occurs early and has reached steady state by four weeks
- The nonclinical package reveals an 'uneventful' safety/tox profile, at very high dose multiples, following many months of treatment in both rats and monkeys
 - No evidence of toxicity observed and no evidence of greater risk over time

Rationale for CERE-120 Dosing Schedule in Advanced PD subjects (cont.)

- Protocol 'leverages' decades of **experience** gained with **growth factors** in animals and **humans** (scores of patients dosed up to several years each)
- Those studies suggest **greatest risk** for toxic effects (humans and animals) is **untargeted delivery** and these effects typically appear within days to < four weeks
- **Hypothetical risk** with gene transfer: **uncontrolled spread** of protein to ventricles. **Data** for CERE-120 (volume of distribution with large dose multiples over many months) convincingly argue that this is extremely unlikely with proposed human doses 44

Issue #7: Rationale for Dosing Schedule in Humans

Synopsis:

- Proposed dosing schedule supported by:
 - Data generated for CERE-120, as well as, that for neurotrophic factors, generally
 - Need to find more effective treatments for advanced PD patients
 - Careful safety monitoring proposed

Specific issues raised in RAC review deserving special comment

- 1) Evidence of efficacy of CERE-120
- 2) Kinetics and accumulation of NTN in brain
- 3) 'Multiple brain regions' targeted and spread of protein to non-targeted brain regions
- 4) The use of non-regulatable vector
- 5) Question of 'rescue strategy'
- 6) Cerebellar toxicity reported in select, GDNF-treated monkeys
- 7) Rationale for dosing schedule in humans

